
AIPS 2002 Workshop on On-line Planning and Scheduling Toulouse, France, April 24, 2002

CLEaR: A Framework for Balancing Deliberative and Reactive Control

Forest Fisher, Daniel M. Gaines, Tara Estlin, Steve Schaffer, Caroline Chouinard

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Dr.
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
A major challenge in developing robotic applications for
real-world problems is that many domains include tight
resource and temporal constraints coupled with uncertainty
in how much resource and time will be required to perform a
task. We have developed the CLEaR framework to address
this challenge. CLEaR unifies the planning and execution
processes to increase the responsiveness of a robotic agent
operating in these types of environments. This unified
approach is realized by extending the traditional three-tier
robotic control architecture with an Execution-Time Plan
Manager, an Atomic Resource Manager (ARM) and an
Execution-Time Query (ETQ) capability. Through the
interaction of these components, CLEaR is able to (1) reduce
the need to replan, (2) detect the need to replan earlier, and
(3) replan before entering a failed state.

Introduction
Robotic agents performing under hard resource and time
constraints in uncertain environments require careful
balancing of both deliberative and reactive reasoning
[Knight, et al, 2001]. As in most domains with uncertainty,
a task may fail or produce unexpected results leading to plan
failures. If the robot is also under hard time deadlines and
resource constraints, a task requiring a different time or
resource allocation than planned could cause failure at
future points in the plan. In some cases, the robot may be
able to retry a failed task, use more time or take up more of
a resource without causing a problem.

Consider for example, a Mars exploration rover that must
pick up a rock. If it fails on its first attempt, it may want to
try again. However, doing so could lead to other problems
at later stages of the plan. If the rover spends too much time
trying to complete this task, it may miss another deadline,
such as taking an image while the sun is in a particular
position in the sky. Or, it may use up too much of some
resource, such as energy, resulting in the inability to perform
other critical tasks. The challenge is to determine whether
or not a change in time or resource usage will cause a
problem so that the rover can take appropriate action, and to
identify and fix the conflicts in the plan without preventing
the rover from meeting other deadlines. In this example, a
deliberator is used to project current resource and time
usage into the future, detect problems and make repairs. An
executive uses more reactive reasoning to deal with
unexpected events and perform low-level control. The rover
needs both of these capabilities to successfully operate in
this environment.

Most of the robotic applications in the literature have not
been confined by hard resource constraints and strict time
deadlines; consequently little work has been done in this
area. However, there has been a growing awareness of these
issues in recent years. At NASA, almost all the robotic
space exploration domains involve uncertain environments
with deadlines and tight resource constraints.

In pursuit of developing high-level control software
capable of addressing these issues, we have developed the
CLEaR (Closed Loop Execution and Recovery) control
software/framework. CLEaR provides a unified framework
for performing planning, scheduling and execution by
balancing both deliberative and reactive reasoning. In most
related approaches to robotic control, the planning and
execution components are treated as black box functions
that do not interact in real-time. Our approach differs in that
both the planning and execution functionalities share the
responsibility for decision-making and resource
management.

In our system the unified planning and execution
responsibilities are realized through three means of
increased interaction and information sharing between the
deliberative and reactive functions:

1. The executive provides soft-real-time state,
resource and time updates enabling the deliberator
to anticipate problems and replan if necessary.

2. The deliberator provides rapid response to queries
about time and resource usage variations, thus
enabling the executive to manage a task that is
behaving unexpectedly.

3. The executive uses execution time resource
knowledge combined with projected usages while
managing tasks.

By enabling the long-term deliberation and the short-term
reactive execution functionalities to share information on a
more frequent basis, the system can: (1) reduce the need to
replan, (2) detect the need to replan earlier and (3) replan
while continuing to execute valid portions of the plan
without entering a failed state. In other words, the system
can circumvent as many failure situations as possible
without impacting plan execution. By achieving these
capabilities we are able to produce a robotic agent control
system capable of goal-based commanding in an uncertain
environment while adhering to hard resource and time
constraints.

Our framework for balancing deliberation and reaction
has been motivated by several NASA space exploration

domains. The most significant influence has been Mars
surface exploration with autonomous rovers, especially the
proposed Mars Smart Lander mission. In the next section
we will describe this mission and illustrate how the mission
provides challenging time and resource constraints for an
autonomous robot. We will describe how we have designed
CLEaR to deal with these types of challenges and then
present a case study illustrating how CLEaR will enable a
rover to successfully deal with these challenges.

2009 Mars Smart Lander Rover scenario
In 1997, JPL successfully completed the first mission to

explore Mars’ surface with a mobile robotic platform
(Sojourner rover). During the mission, human ground teams
performed nearly all deliberative decision-making including
the determination of resource bounds. While the mission
was a landmark in space exploration and provided valuable
science data, it required intensive human interaction and
explored a very small region of terrain.

In 2009, JPL plans to send another mobile robotic
platform to Mars to perform numerous geological surface
experiments. This mission is currently called the Mars
Smart Lander mission and represents a significant increase
in scale with respect to mission duration, science return and
terrain covered. Figure 1 provides an overview of the
mission. The mission objectives are to explore the landing
site and make long-range traverses to two additional
geological science locations where the robot will perform
more science data gathering. The rover will have limited
resources, such as power and RAM, to complete these goals.
It will also be under tight time constraints in order to
complete the ambitious objectives and meet mission
requirements, such as ground communication windows.

There will be communication with Earth at the beginning
and the end of each Martian day. In the morning session,
the goals for the day are uploaded to the rover and
additional data will be down-linked. In the evening, the
day’s data is down-linked. This data includes panoramic
images used in selecting future goals.

This scenario has two modes of operation.. The first
being the geological science location operations, and the
second being the long-range traverses between those
locations. During the first mode, the role of high-level
autonomy software will primarily involve resource
management (mainly power, memory and time) and robust
execution.

During the second mode, the rover is expected to make
long-range traverses averaging 600m/day. This distance is
well beyond the “line of sight” of the ground operations
team based on images down-linked from the previous day.
Therefore the traverse will require significant onboard
autonomy. Further motivating the need for high-level goal-
based autonomy is that the rover should perform as much
opportunistic traverse science as possible without impacting
the progress of the 3km long-range traverses.

Unified Planning and Execution Framework
Current practice for rover operations, as used on the
Pathfinder mission [Mishkin, et al, 1998] and planned for
the upcoming 2003 Mars Exploration Rover (MER)
mission, is to perform nearly all decision making remotely

f
d
p
F
c
a
a
c
c
s
f
s
o
b
s

a
t
s

o
h
T
d
d
t

c
s
c
i
a
t
p
r
h
t
f
u
e
d
w
o

m
d

1

i

5km

10km

Landing Site

Geological Science
Location #1

Geological Science
Location #2

Geological Science
Location #3

Long-Range Traverse
Traverse > 3km

5km

10km

Landing Site

Geological Science
Location #1

Geological Science
Location #2

Geological Science
Location #3

Long-Range Traverse
Traverse > 3km

Figure 1: Mars Smart Lander Scenario

rom earth. When the rover encounters a situation that
eviates from its uploaded command sequence, the fault
rotection software will attempt to resolve the problem.
ailing that, the rover enters safe-mode and must: wait for a
ommunications opportunity, transmit the state of the rover
nd imagery of the environment back to Earth, and wait for
 new command sequence. Depending on when the next
ommunication window is scheduled, this can waste
onsiderable time. Further, to date these rovers have been
olar powered and can only perform major functions for a
ew hours per day (typically 4-6 hours). Placing the rover in
afe-mode can easily cause the loss of a full day of
perations. Because the mission cannot be extended, falling
ehind schedule due to execution failures results in reduced
cience return.

While this style of operations reduces development cost
nd simplifies testing of flight control software, it adds to
he time and cost of mission operations. This, in turn,
everely limits the rover’s in-situ capabilities.

From an automation standpoint part of what limits rover
perations performance is that the decision-making process
as traditionally been separated from the execution process.
o address this several systems have colocated the
eliberative-planning and execution capabilities, to
ramatically increase the rover’s responsiveness and reduce
he need for the rover to be put into safe-mode.

Most of these systems can be classified as three-tiered
ontrol architectures [Gat 1998]. Under a three-tiered
ystem the deliberative planning and reactive execution
omponents are colocated but tend to function
ndependently typically in a black-box integration. These
rchitectures get their name from a stack-like partitioning of
he system into three functional components. The top tier
rovides deliberative function, the middle tier performs
eactive execution, and the bottom interfaces to the
ardware controllers. Generally, the higher up in the stack,
he greater the level of abstraction at which the components
unctions and the longer it takes to perform. The top tier is
sually reserved for search algorithms. In the event of an
xecution failure, when compared to Earth-based
eliberation, this approach can reduce the time the rover
aits for ground intervention by facilitating replanning
nboard.

While some systems will plan for future phases of a
ission during the execution of the current phase. One

rawback of many traditional three-tiered1 approaches is

 Not all three-tiered architectures are limited by Sense-Plan-Act(SPA), for
nstance ATLANTIS [Gat 1992] plans and executes asynchronously.

that they do not instigate replanning prior to an execution
failure of the mission phase currently being executed. In
order to replan and thus preempt execution failures, it is
necessary to provide the deliberator with frequent state,
resource and temporal updates. These can then be
propagated through the plan to predict future
inconsistencies. If the deliberator is able to incrementally
resolve these conflicts2 while executing valid portions of the
plan, then the robotic agent will be more responsive to
unexpected events. We refer to this capability as continuous
planning.

In our implementation of this framework, we use
CASPER (Continuous Activity Scheduling Planning
Execution and Replanning) as the continuous planner
[Chien, et al, 2000a, 2000b]. CASPER provides the
Deliberator and Execution-Time Plan Manager components
depicted in Figure 2. The Executive component is provided
by TDL (Task Description Language), a robust task level
execution framework [Simmons, Apfelbaum 1998].

The CLEaR framework is distinct from other three-tier
architectures because it provides increased interaction and
information sharing between the executive and the
deliberator [Gat 1998, 1992; Bonasso, et al, 1997]. This is
partly realized by the use of a continuous planner combined
with frequent updates from the executive to the deliberator.

Two other areas of increased interaction and information
sharing are provided by the executive’s ability to: (1) make
decisions on how to execute a task by querying the
deliberator to determine if a given execution will cause a
plan failure and (2) consider execution time resource
knowledge in deciding on task expansions. These last two
capabilities are provided by the Execution Time Query
(ETQ) manager and the Atomic Resource Manager (ARM),
also depicted in Figure 2. In the following two sub-sections,
we describe these components.

ARM: Atomic Resource Management
Motivations and Design Goals

There are certain types of activities that require a resource
intermittently during their execution. For example, while a
rover is navigating, it will occasionally take images to detect
and avoid obstacles in its path. Although navigation
requires the camera, it does not use it continually. In fact,
after each image, it can make a rough estimate of when it
needs the camera again. This can be done because, given an
image, the navigation activity determines how far it can
safely travel before taking another image. As a result, the
camera will become available at different times throughout
the navigation, and it would be nice if other activities could
take advantage of this.

In fact, within the context of the Mars Smart Lander
mission, there is a need for such a capability to enable
opportunistic traverse science during a long-range traverse.
Traverse science uses the camera to take images at different
times during the traverse to look for items of interest. Like
navigation, traverse science does not need the camera
continually throughout the traverse and could use the
camera when not in use by navigation.

2 Our incremental conflict resolution is performed by an iterative repair
algorithm [Zweben, et al 1994; Minton, Johnston 1998].

i
o
w
p
a
n
w
w
f
o
r
i

c
i
p
t
t
t
s
c
d
e
w
v
r
r
a
p
f
t
a
a
t
n
d
a

d
B
c
m

Deliberator

Executive
ARM

ETQExecution-Time
Plan Manager

Low Level Control Software

Deliberator

Executive
ARM

ETQExecution-Time
Plan Manager

Low Level Control Software

Figure 2: CLEaR Framework Diagram
In general, we may have several activities that each make
ntermittent use of a particular resource. If we knew ahead
f time when each requires the resource and for how long
e could use deliberative scheduling techniques to create a
lan to avoid resource conflicts while executing these
ctivities. Unfortunately, for some activities, such as
avigation, we cannot accurately predict when the resource
ill be needed. Furthermore, the accuracy of our prediction
ill decrease as we attempt to predict uses further in the

uture. As a result, an activity may use the resource earlier
r later than expected, and once the activity has the
esource, it may require it for a duration different from what
t had originally anticipated.

Given these conditions, scheduling such activities is
hallenging. Previous approaches for dealing with these
ssues include the following. First, a planner could avoid the
roblem by refusing to schedule activities concurrently if
hey require the same resource, regardless of whether or not
hey only require the resource intermittently. The downside
o this is that you are limiting the robot’s capabilities, and in
ome applications concurrent activities are required to
omplete a goal. A second approach would be to form a
eliberative schedule for these activities based on rough
stimates on the frequency and duration that each activity
ill use the resource. The disadvantage here is that it is
ery unlikely that during execution the activities will use the
esources as predicted. This could be handled by performing
escheduling within the planner as it gets new updates on
ctual resource usage or by allowing the executive to
reempt lower priority tasks whenever there is contention
or the resource. The former approach is likely to result in
hrashing within the plan as information changes. Both
pproaches are likely to lead to a large number of preempted
ctivities. A third approach is to create special executive
ask managers for each combination of activities that may
eed to run in parallel. Each such manager would be
esigned to arbitrate resource usage among these particular
ctivities.

Instead, we have chosen to deal with these challenges by
eveloping a resource manager for use within the executive.
ecause the executive needs to be responsive to unexpected
hanges, our primary design goal is to keep the resource
anager fast so that it can quickly respond to requests.

Therefore, we will favor simpler designs and algorithms to
reduce computational complexity.

Because the predictions on when and how long a resource
will be used is uncertain, the resource manager must be able
to quickly react so that high priority activities can have
access to the resource when it is needed. However, the
resource manager should make use of predicted information
when available to try and reduce the number of times it must
preempt another activity. Thus, our secondary goal is to
balance the use of deliberation and reaction, where
deliberation takes advantage of predicted information and
reaction to deal with unexpected changes in resource usage.
Design of ARM

For our first implementation of ARM, we decided to
address only atomic resources. An atomic resource can be
used by at most one task at a time and is either available or
not available. For example, a camera can be used by a
single activity and, therefore, is considered an atomic
resource. In contrast, aggregate resources, such as solar
array power, can be used by several tasks at a time and each
task can use a different amount of solar power. This makes
it more difficult to represent and search for reservations. As
this reasoning is needed, we rely on CASPER’s deliberative
planning and scheduling capabilities to perform reasoning
about aggregate resource usage. These decisions are
generally based on near worst-case estimates of usages. In
the next sub-section we describe a method for enabling the
executive to make reactive decisions about aggregate
resources with the assistance of the deliberator.

Figure 3 shows the design of ARM. For each resource,
ARM maintains a timeline that keeps track of when the
resource is in use, along with the task and the priority of the
task that is using it. For each reservation on this timeline,
ARM keeps a ticket, which can be used by tasks to access
their reservations.

Before a task can use a resource it must first make a
request to ARM indicating its priority, the time interval
within which it would like to start using the resource and the
duration that the resource will be used. If ARM can find
room, it will place a reservation on the timeline and return a
ticket to the requesting task. Before using the resource the
task must hold a valid ticket and claim the resource. When
the task is finished with the resource or otherwise no longer
needs the reservation, it sends a release to ARM, which will
clear out the reservation.

Although this is the nominal behavior of the system, it is
unlikely that things will go so smoothly during execution.
Therefore, ARM is designed to deal with unexpected
situations. Unexpected events include: a task requiring a
resource sooner or later than it anticipated, a task using a

resource for a shorter or longer duration than it expected
and a task making a reservation during a time interval in
which another task already has a reservation. All of these
cases are handled by ARM. The following subsections
provide more detail on how these issues are resolved. In
general, our approach is to associate a task priority with
each reservation. Whenever there is a conflict for a
resource, the task with the higher priority wins. If the tasks
have equal priority, advantage is given to the task that came
earlier.
Requesting a Ticket

In keeping with our goal of avoiding preemption due to
resource conflicts, the resource manager will do some
amount of look ahead when processing requests from tasks.
Look ahead is facilitated by requiring each task to request a
ticket before using a resource. A ticket represents a promise
between ARM and a task. When a task requests a ticket, it
informs ARM of the time in which it would like to start
using the resource and the duration of that usage. If ARM
can find a slot for the request, it will issue a ticket, giving
the task the right to claim the resource during the specified
interval.

However, given uncertainty during execution, the
manager cannot strictly follow these reservations and must
accommodate deviations in the actual timing requirements
of the activities. The resource manager will have to modify
the plan, which may involve dropping lower priority
reservations or preempting the current resource holder. The
resource manager will attempt to give notice to the affected
activities so that they can take appropriate action.

Figure 4 shows the algorithm used for making
reservations. When an activity makes a request, it provides
its priority, the time interval in which it would like to begin
using the resource and the duration indicating how long it
intends to use the resource. Note that the duration is
independent of the time interval in which it would like to
start using the resource. ARM first tries to find an existing
slot during the requested time interval. If none are found, it
will begin removing lower priority reservations until enough
space is freed or until all the remaining reservations have
equal or higher priority than the requesting task.

The algorithm runs in time O(n2) where n is the number
of currently open reservations (i.e. reservations not in the
past). At each priority level, the algorithm must search
through the reservations at that level and higher looking for
open space. In the worst case, each reservation is at a
different level, requiring n iterations through the loop

request

ticket

claim

release

event

callback

Task 3

Resource Timeline

Tickets

Task 2
Priority 15

Resource 1

Resource N

Priority 10Priority 5

ARM

Task 1Task 1
Priority 10

Task Manager 1

time

Figure 3: Design of ARM

Request (priority, startTime, endTime, duration)

T = resource timeline
T’ = working copy of T between startTime
 and (endTime + duration)
p = -INFINITY
While p < priority
 Remove from T’ all reservations with priority p
 i = earliest free interval in T’ with size >=
duration
 If i exists:
 Discard from T any reservations during interval i

 Create new reservation for interval i
 Return i
 p = lowest priority in T’
Return failure

Figure 4: ARM Reservation Request Algorithm

 The reservation algorithm reveals tradeoffs that were
made when designing ARM. Our objective was to provide
fast response to the requesting task without disturbing
existing reservations. The quickest algorithm would be to
first remove all reservations with a lower priority than the
requesting task and then find a free space. While fast, this
could also result in the unnecessary removal of reservations.
The algorithm we are using is more computationally
complex. It iterates through the reservation priority levels in
an attempt to remove lower priority reservations first.
Although of higher complexity, this algorithm better
enforces graduated priority levels and only iterates a few
times in practice.

We recognize that many further enhancements could be
made to the scheduling algorithm such as: instead of
removing reservations when there is no room for a new
request, it might be possible to relocate them. Alternatively
a single higher priority reservation may be removed to
preserve numerous lower priority reservations. However,
we did not incorporate these techniques because (a) they
would have involved computationally expensive search and
(b) the benefit would be reduced if a task did not perform as
predicted, thus forcing repeated changes to the plan.

Our approach does not consider multiple reservations
simultaneously. Some tasks may require the use of several
resources at the same time, requiring concurrent free
intervals to be found for each resource. More complicated
situations could arise if tasks require resources at temporal
offset from each other. This type of scheduling is dealt by
our deliberator and not ARM.
Claiming a Resource

A task may claim the resource at any time during its
reservation. This addresses the uncertainty a task may have
about when it needs the resource. If it is late, it can still
claim the resource. However, if it needs the resource
earlier, it must request a new reservation.

If another task is still holding the resource (after its
reservation period), then ARM checks the priority of the
tasks. The higher priority task always wins, and ties are
broken in favor of the current resource owner. This avoids a
possible preemption.
Releasing a Ticket

A task can release a resource at any time, providing extra
free space on the timeline for new requests. However, if the
task requires the resource for longer than allotted, it may
keep it until a higher priority task makes a claim.

ETQ: Execution-Time Query
Even with execution-time atomic resource management,

situations will arise where a task requires a different amount
of a resource or time than was scheduled. For example,
adverse soil conditions may make it more difficult for a
rover to dig, thus using more energy and time to complete
the task. To enable reactive reasoning about aggregate
resources and time, we have developed an Execution–Time
Query (ETQ) mechanism to enable the executive to safely
deviate from the constraints laid out in the plan by the
deliberator.

One approach to dealing with this problem is to allow the
task to continue operation and use more of the resource. As
resource and time updates are made, the deliberator will
detect problems that this extra resource use will have on the

p
f
f
d

e
c
s
e
c
w
i

q
p
c
t
t
c
T
m
u
t
p
i
a
p
w
c
c
a
t
t
n
I
t

m
t
a
c
u
p

C
I
c
t
t
I
b

time

Reactive Functionality

Deliberative Functionality

Current Time

time

Reactive Functionality

Deliberative Functionality

Current Time

Figure 5: CLEaR Concept Diagram
lan. For some types of resources, this approach will be
ine. If an imaging task uses extra RAM, and the scheduling
unctionality detects that this will cause a problem, it can
ecide to discard some of the collected data.

Unfortunately, other types of resources cannot be so
asily replenished, and this approach could lead to
atastrophic failures. If the rover uses extra energy, the
cheduling functionality detects a problem too late and the
nergy is already gone. This could prevent the rover from
ompleting a mission critical task such as communicating
ith Earth. Sometimes it is better to ask for permission than

t is to ask for forgiveness.
To deal with this challenge, our framework supports a

uery system that enables the executive to ask for
ermission before exceeding a resource limitation. This
apability provides global consideration of resource and
ime usage during execution. When a monitor detects that
he resource will be over-subscribed, instead of just
ompleting or failing the task, it can query the deliberator.
he executing task queries the deliberator indicating how
uch more of the resource or time the task would like to

se. The deliberator then does a quick check to determine if
he new resource usage would cause any conflicts, by
lacing this new expected use into the plan and propagating
t forward. This is done similarly to how execution updates
re handled. If no conflicts result, then the query request,
ermission is granted and the task can continue to execute
ithin the confines of this new resource or time

onstraint/restriction. If this query propagation creates any
onflicts then the projected update is backed out of the plan
nd the request is rejected. As we will see in the scenario,
here are situations when exceeding the resource allotment is
he desired behavior. For that reason, the framework does
ot require that execution-time resource query be used.
nstead it is left to the knowledge engineer to decide which
asks should “ask for permission” or “ask for forgiveness”.

Similar to the design of the execution-time resource
anagement functionality, there are alternative designs for

his query capability that would provide more functionality
t higher computationally expense. The deliberator could
heck if the conflicts resulting from a changed resource
sage could be adequately repaired, and if so, give
ermission to the task.

urrent Status
n our current framework CASPER creates abstract
ommand sequences and executes those sequences by
ranslating the CASPER planning activities into TDL task-
ree goal nodes, which are then further expanded by TDL.
n Figure 5 we graphically depict levels of responsibility
etween deliberative and reactive decision-making as a

fu
wi
As
in

re
ba
de
re
ex

W
pl
th
pr
co
de
fo
pe
Ro

sc
ge
ga
up
gr
sc
fo
at
ea
alg
20

oc
sc
as
pr
19
0

1 2 4

3

5

6

7
8

9

11

100

1 2 4

3

5

6

7
89

0

1 2 4

3

5

6

7
8

9

11

100

1 2 4

3

5

6

7
89

A: Initial Plan Map B: Executed Plan Map

 Global map knowledge
(Orbit or descent imagery)
Local map knowledge

Original path

Actual path

Science goal target

Deleted Science Target

Imaging Task

Digging Task

Spectrometer Read Task

Communication Task

Global map knowledge

Local map knowledge

Original path

Actual path

Science goal target

Deleted Science Target

Imaging Task

Digging Task

Spectrometer Read Task

Communication Task

Figure 6: Scenario Maps for a Geological Science Location
nction of time. At the current time, all decision-making
th respect to the executing tasks are performed reactively.
 the plan is projected forward, the deliberator takes on an

creasing role in decision-making.
By enabling the long-term deliberator and the short-term
active executive to share information on a more frequent
sis, the system can: (1) reduce the need to replan, (2)
tect the need to replan earlier and (3) when necessary
plan before entering a failed state while continuing to
ecute other valid portions of the plan.

Scenario Examples:
e are continuing to develop both our concept of unified
anning and execution along with the implementation of
at concept within the CLEaR system. To assist in this
ocess, we are developing rover mission scenarios
nsistent with the proposed Mars Smart Lander mission,
scribed in the Mars Smart Lander Rover scenario section,
r use in testing and validating our system. We are
rforming tests in simulation and on the Rocky7 and
cky8 research rovers in the JPL Mars Yard.
Figure 1 provides a high level view of the complete
enario, which includes two long-range traverses to three
ological science locations and several science data
thering goals at those locations. Figure 6 contains a blow-
 view of one potential geological science location. The
ound operations team provides the rover with eight
ience targets within this site. These targets consist of:
ur images, two spectrometer readings, and two digs each
different locations. The ground team assigns a priority to
ch target, which is used in the science return optimization
orithm of the deliberator and ARM [Rabideau, et al,
00].
Our description of the scenario will begin with events that
cur while the rover is completing tasks at the geological
ience location. We begin with this portion of the scenario
 these techniques are a logical extension to those of
evious work in integrated planning and execution [Gat
98, 1992; Bonasso, et al, 1997]. We will then move on to

events that occur during the long-range traverse between
science locations. During this section we will describe how
these new capabilities, namely ARM and ETQ, increase the
rover’s ability to deal uncertain events.

We decided to turn the execution-time query facility off
while the rover was in the geological science site. This was
done because each of the goals in this part of the scenario is
part of the rover’s primary mission. If it requires extra
resources to complete a task, it should do so, and the
planner will have to repair the plan as best it can to achieve
future goals. During the long-range traverse, in the second
part of the scenario, we will use execution-time resource
queries to prevent opportunistic science from interfering
with the rover’s primary goals.

Part 1: Within the Geological Science Location
The system begins by employing a generic Traveling
Salesman Problem solver to identify an initial sequence
(tour) for visiting each of the science targets. The sequence
is then expanded to include all of the planner level activities
required to carry out that tour. During the generation of the
command sequence, all of the resource constraints are
maintained. For our current scenario this means that the
rover’s energy and memory resource profiles must be
maintained within the operations constraints. For energy
this requires that the projected and actual used energy level
must not drop below the prescribed margin levels. In part
this is to ensure that there is enough energy available for the
communications activities at the end of each day and also to
ensure that there is enough energy stored in the batteries for
overnight operations. For memory the system must balance
the memory buffer capacity to maximize science return and
ensure the availability of memory storage space for future
higher priority science observations.

The dashed line in Figure 6-A indicates the initial planned
sequence that the rover will take to visit the science targets.
However, things will not go as planned during execution
and the plan will have to be modified, as shown by the solid
line in Figure 6-B. The following section highlights some of
the unexpected events that occurred during execution and

the challenges these events posed when coupled with the
time and resource constraints imposed by the mission.
Deliberator

The first problem with the plan is detected before
execution begins. The rover has been asked to collect more
science data than it has room to store in memory. The
deliberative scheduling functionality is able to detect this
problem and discards low priority science targets until
enough space is available for the remaining targets. In the
example, image target 1 from Figure 6-A is thrown out, and
a new path for visiting the remaining targets is generated.
Execution-Time Plan Manager

During execution, other resource usage issues arise. One
of the challenges in execution monitoring for a system under
time and resource constraints is that it is not enough to
detect whether or not an action resulted in success. One
must also monitor how the activity affected the rover’s
resources and how much time it took. For example, in
Figure 6-B, the image task at target 4 and the dig at target 5
were successful in that the main objective of the task was
completed. However, they also resulted in the use of more
resource than was anticipated. The image task required an
excessive amount of memory and the dig used up too much
energy.

The Execution-Time Plan Manager (Figure 2) enables the
rover to deal with these problems. The Executive
continuously provides updates on the state of each resource.
After each task is completed, the continuous planner notices
that there will be a deficiency in one or more resources. For
example, after the image is taken, the system realizes that
there will be insufficient memory to complete the other
science goals. In each case, the deliberator looks for low
priority tasks to drop, just as it did during initial plan
generation.

Similar behavior occurs when a task requires an
unexpected amount of time. Like the resource constraints,
tight time constraints require that the rover keep track of
how much time a task is taking so that it can avoid missing
future deadlines. For example, as the rover moves from
target 2 to target 3, its obstacle detection behavior must
avoid unexpected rocks that did not show up in the initial
map the rover was given. If the rover spends too much time
trying to reach this target, it may miss other deadlines, such
as the communication opportunity with Earth.

Again, the continuous scheduling functionality of our
framework addresses this challenge. Just as each task
includes monitors on resource usage, some tasks also
include monitors to track the rover’s progress over time. In
this example, the monitor realizes that, given the rover’s
position, it will not be able to complete the task in the
allotted time. At this point the continuous scheduling
functionality takes into account the latest information about
obstacles in the area and modifies the plan accordingly. As
in the previous cases, it might be necessary to drop certain
tasks to make up time. However, in this case, it turns out
that the rover can visit the targets in a different sequence
and still have enough time to make the communication
deadline.

Part 2: Long-range Traverse Between Geological
Science Locations
After the rover completes the tasks in Figure 6, it must
proceed to the next geological science location in Figure 1.
This portion of the scenario will highlight benefits of
performing execution-time resource management to
schedule concurrent activities that make intermittent use of
the same resource. We will also show how the execution-
time query facility can be used to prevent a task from
interfering with a plan when it requires more of a resource.
ARM: Atomic Resource Manager

The benefits of execution-time resource management are
highlighted during long-range traverses. Recall from the
Mars Smart Lander (MSL) reference mission that we would
like to perform opportunistic science during these traverses.
Although both the traverse and traverse science tasks
require the use of the camera, neither requires it
continuously. These tasks can be scheduled concurrently.
Due to uncertainty in execution, however, it is difficult to
predict when and for how long each task will require use of
the camera.

To test our execution-time resource scheduling capability,
we created a simulation to model the camera usage behavior
of Gestalt, the navigation software that will be used on the
2003 Mars Exploration Rover (MER) mission. Whenever
Gestalt takes an image, it determines how far the rover can
safely travel before it must take the next image. With an
estimate of the rover's velocity, we make a prediction of
when the traverse will require the camera again. A
corresponding request is made to the resource manager for
the interval that the camera will be needed.

Meanwhile, our simulation of opportunistic science tries
to take images as often as it can. Before using the camera, it
must first make a request of ARM specifying how long it
will need the camera. As stated in the MSL reference
mission description, opportunistic science should not

Science
6

Science
4

Science
5

5
Science

G

F

E

C

B

D

A

unused to avoid preemption

new reservation

traverse late in making claim

current time

task preempted

task superseded

1

Traverse

Traverse

1 16 210

2
Science

1
Traverse

0 1 6 7

Traverse

16 21 26

2 3 1 4

6

Science Traverse Science

1 6 7 12 16 21 26

2 3
Science Science

1

Traverse

0 1 6 7 12 16 21

2 3 1
Science Science Traverse

0 1 6 7 12 16 26

2 3
Science Science

0 1 6 7 12 16 21 26

2 3
Science Science

6
Traverse

31 35

0 1 6 7 12 16 21 26

2 3
Science Science

6
Traverse

31

1

12

0

1

Science

Camera Resource Timeline

17 22

272221

17 22 27

272217

Figure 7: Example of ARM in Action

interfere with other rover activities; thus, we give
opportunistic science a lower priority than traverse tasks.

Figure 7 illustrates the events that occur during a typical
run. The figure depicts the reservations that are placed on
the camera resource timeline during the execution of the
traverse and opportunistic science tasks. Each reservation is
numbered to indicate the order in which it was placed on the
timeline. The time units in the x-axis are in seconds and
mark the times for the various reservations. The upward
arrow denotes the current point in time.

At the start of the scenario, Figure 7 (A), the traverse task
has made a reservation that will begin at time 16 and last for
5 seconds, until time 21. Next, opportunistic science makes
a request for the camera for sometime between time point 1
and time point 31. The executive resource manager finds
space for the reservation starting at time 1. As time elapses,
the science task completes its first use of the camera, places
another request and uses the camera for a second time. At
time point 12 in (C), opportunistic science requests the
camera, however it cannot be given the earliest slot because
its duration would conflict with traverse’s reservation.
Therefore, it is given a reservation that begins at time 21. In
the absence of execution-time resource management,
opportunistic science would take the earlier slot and later be
preempted by traverse. This step demonstrates how ARM
protects against preemption. Instead, opportunistic science
is scheduled at a time when the resource is predicted to be
free.

In (D) things do not go as planned: traverse has taken
longer than expected to claim the resource. The behavior of
the system at this point depends on how traverse interacts
with the resource manager. If traverse releases its current
reservation and makes a new one to start immediately, the
resource manager will notify the following science task that
it has been superseded.

However, in the example scenario, the traverse task does
not release the resource and instead claims it and then holds
on to it past its scheduled reservation. At time point 21,
opportunistic science attempts to claim the resource but is
denied in favor of the higher priority traverse. Science then
makes a new request and is given a reservation starting at
time slot 22. Here, no preemption was necessary to resolve
the conflict, as the science task was not started.

There will be cases when preemption cannot be avoided.
An example occurs in (F) when the science task has been
initiated, but then the traverse requires the use of the camera
beginning at time 26. Because traverse has higher priority,
the resource manager gives it a reservation and preempts the
opportunistic science task. (G) Shows the final state of the
timeline after opportunistic science has been given a new
reservation.
ETQ: Execution-Time Query

As stated earlier, opportunistic science should never
interfere with other rover activities. Therefore, for the
traverse portion of the scenario, we employ the execution-
time query (ETQ) capability to enable the task manager for
opportunistic science to ask permission before using more
of a resource than it was prescribed by the plan.

In our scenario, the deliberator allocates a certain amount
of memory for use by opportunistic science based on a
rough estimate of how many images it will take and how
much RAM the images will require. If, during execution,
0 0.3 0.5 0.7 1
0

5

10

15

20

25

30

35

40

45

Noise level

N
um

be
r

of
 S

uc
ce

ss
fu

l/F
ai

le
d

Im
ag

es

Schedule Success
No−Schedule Success
Schedule Failures
No−Schedule Failures

Figure 8: Successful and failed science image attempts with
scheduling and non-scheduling versions of ARM
opportunistic science is able to take more images than
predicted, or the images require more memory than
anticipated, the task manager will detect that the task has
used up the memory it has allocated. At this point, if it
would like to take another image, it will use ETQ to see if it
can use more memory without disrupting the plan. In its
query it states the amount of additional memory it would
like to use. If the scheduling facility determines that this
extra usage will not cause conflicts, it will give
opportunistic science the permission to take the image.
However, opportunistic science will have to check again if it
needs extra memory beyond this new allotment. If the
additional use would lead to conflicts, opportunistic science
would be denied and would have to stop taking images.

Note that ARM is unable to perform this function because
it does not have the long-term picture of the plan that the
deliberator has. Further because ARM currently only
addresses atomic resources, it is unaware of future memory
requirements and, thus, does not know whether or not a task
using extra memory now will cause problems in the future.

Evaluation of ARM
We ran a series of tests to evaluate the impact ARM has

on the execution of concurrent activities that make
intermittent use of a shared resource. Our main objective
with the evaluation was to determine if there is any benefit
to using the scheduling capability of ARM. Our intention in
designing this capability was to allow ARM to use
predictions about resource usage to do simple form of
scheduling in an attempt to avoid preempting tasks. The
study looks at the impact of ARM's scheduling on task
preemption.

Methodology:
Our evaluation scenario is based on the opportunistic

traverse science task described earlier. In our example, the
objective of traverse science is to take as many images as it
can during a long range traverse. Before taking an image, it
must first request the resource from ARM stating when it
would like to use the camera and for how long. When
making the request, the science task tries to get the resource
as soon as possible but is willing to accept it any time until
the end of the traverse. We used a duration of 4 seconds.

The traverse task uses the camera at different intervals to
look for obstacles in the path. Based on the images it will
plan a path that is typically 35 centimeters in length. It does
not use the camera while following that path and thus it can
be made available to other tasks, in this case the science
task. After each image is taken, the traverse task makes a
prediction for when it will need the camera again, based on
how fast it moves and the length of the planned path and
requests the resource from ARM for that predicted time.
For the purpose of evaluation we picked nominal values of
14 seconds between camera uses and 4 seconds for using the
camera.

To test the performance of ARM under uncertainty we
included noise with these numbers. For each run we select a
different probability p. With probability 1-p, the predicted
and actual resource use will be the times stated above. With
probability p, the predicted duration and time before the
next camera use will be drawn randomly from 2-6 seconds
for the duration of use and 9-19 seconds for the time before
the next use. Because the predicted camera use will not
always match the actual use (e.g. it may take longer to travel
the planned distance) we also vary the actual use. Again,
with probability 1-p, the actual use will match the predicted
use. With probability p we randomly pick the duration and
time before the next camera use from the same intervals
used for the predicted use.

For priorities, we gave the traverse task a higher priority
than the science task.

We ran two versions of the system Schedule and No-
Schedule. The Schedule version works as described above
using predicted resource usage information to avoid
preemption. The No-Schedule version does not take
resource reservations. Instead it simply give the resource to
the higher priority tasks whenever it requests it.

Results:
Figure 8 contains the results from running each system at

5 different noise levels. Each entry in the table indicates the
number of successful traverse science images taken along
with the number of failed science images. In each case, a
failed science image represents a preempted science task.
Note that because the traverse task had a higher priority, it
was never preempted.

Discussion:
Overall, these results show that the scheduling capability

of ARM is effective in avoiding the preemption of tasks.
Without any noise, the schedule version worked perfectly
and did not preempt a single task. At higher levels of noise,
a few tasks were preempted but much fewer than the No-
Schedule version at the same noise levels. Because the
Schedule version is a bit more conservative than the No-
Schedule version, there were slightly fewer successful
images taken. However, considering that a failed image
corresponds to wasted power, the cost of a small number of
missed images is likely to be much smaller than the cost of
wasted power.

Related work
There have been many techniques for combining
deliberative and reactive reasoning into hybrid architectures

for robotic applications. These architectures have been
successfully applied to many dynamic and uncertain real-
world domains including manufacturing [Lyons and
Hendriks, 1995], military operations [Arkin, 1997; Myers,
1998] and space exploration [Gat, 1992; Washington, et al,
1999; Pell, et al, 1997].
 [Arkin 1998] and [Knight, et al, 2001] contain surveys of
many hybrid architectures. Only a few of these architectures
were designed with resource constraints and tight deadlines
in mind. Consequently, there has been little work in
addressing these issues in dynamic, uncertain environments.
Without some facility for reasoning about resources and
deadlines, there is a danger that the robot will not detect
problems in the plan until it is too late to do anything about
it.
 However, there are some architectures that are capable of
reasoning about resources and deadlines. CIRCA (Musliner
et al. 1993) contains a scheduler that enforces hard real-time
constraints for a mobile robot navigation domains.
However, rather than repair the schedule, it returns failure if
it cannot meet the hard real-time constraints. CPEF [Myers,
1998] uses the SIPE-2 [Wilkins, 1988] planning system
which is capable of resource management. CPEF is unique
in its ability to perform indirect commanding, in which the
system supervises a collection of entities executing the plan
along with its ability to accept user advice for plan
development. [Washington, et al, 1999] present a system
that can perform resource management that is also applied
to the Mars exploration domain. To deal with uncertain
resource and time usage, their system precompiles resource
envelopes to provide task management flexibility to the
executive. The system also performs contingency planning
to deal with the set of most probable plan deviations.
 CLEaR extends the capabilities of the previous systems
by providing execution-time atomic resource management
as part of the reactive reasoning. The CLEaR framework
also provides the reactive reasoning components with
limited access to the global view of the plan through the
execution-time query facility.
 With respect to individual components of CLEaR, ARM
shares some similarities with the resource manager in [Gat
2000]. In particular, both components represent execution-
time resource managers. However, Gat was concerned with
providing hard-real-time guarantees, and enforcing resource
reservations through gate keeping access to the resources.
In contrast, we settled for a soft-real-time system that,
through the use of limited search, can do a small amount of
look-ahead to avoid task preemption. Thus ARM supports
execution-time decision-making, while [Gat 2000] provides
execution-time resource safety.

Future work
Our future work will involve the use of different types of
execution-time resource management (including aggregate
resources), means of better utilizing path-planning
algorithms in conjunction with planning and execution,
means of performing quick local plan repairs while
minimizing global plan risk, and finding other ways of
applying our unified planning and execution framework to
improve mission operations, increase science return and
enable more efficient long-range traverses.

We are also applying the CLEaR system to ground station
automation for NASA’s Deep Space Network (DSN) [DSN
1994; Fisher, et al, 1998, 2000]. In this domain area
CLEaR is used in a similar fashion to generate command
sequences for commanding the ground station
communications subsystems to communicate with assets in
deep space, whether that be Earth orbiters, spacecraft in
orbit around Mars, on the surface of Mars, or as far out as
Voyager I & II now beyond the edge of our solar system.
The CLEaR software has also been licensed by Lockheed
Martin Skunk Works division for use in automating the pilot
functionality of Unmanned Air Vehicles (UAVs).

Conclusions
 Resource constraints and tight deadlines pose challenges
beyond those found in other uncertain robotic environments.
In these applications, a task may require a different amount
of time or resource than anticipated, potentially leading to
execution failure at future points in the plan. We have
developed the CLEaR framework to address these
challenges. CLEaR extends previous work in hybrid
deliberative/reactive architectures in three ways. A
continuous planning and scheduling system allows the robot
to identify and repair problems before they occur, while
continuing to perform other tasks. ARM provides execution-
time atomic resource management enabling the scheduling
of concurrent tasks that require intermittent use of the same
resource, while avoiding the need for task preemption.
Finally, ETQ provides the executive with access to the
global plan perspective needed to prevent tasks from
deviating from time and resource allocations in situations
when doing so will lead to conflicts. This framework will
increase the effectiveness of robots in many real-world
applications, including the space exploration mission
presented in our case study.

Acknowledgement
This work was performed by the Jet Propulsion Laboratory, California
Institute of Technology, under contract with the National Aeronautics and
Space Administration. This work has been partially supported by: the
Inter-Planetary Network Information Systems Directorate (IPN-ISD)
Technology Program’s Mission Planning and Execution (MP&E), the
Intelligent Systems’ Automated Reasoning program, and the Mars
Technology Program’s CLARAty architecture effort. This work has also
leveraged a previous large body of work including JPL’s ASPEN/CASPER
planning and scheduling system and CMU’s Task Description Language
(TDL). We would like to thank all of those involved. We would like to
recognize past CLEaR team members Darren Mutz and Barbara
Engelhardt. We also thank Brad Clement for his editorial comments.

References
Arkin, R., and Balch, T., 1997, AuRA: Principles and Practice in Review,
Journal of Experimental and Theoretical Artificial Intelligence, 9(2)

Arkin, R., 1998, Behavior-Based Robotics, Cambridge, Massachusetts,
MIT Press

Bonasso, R.P., Firby, R.J., Gat, E., Kortenkamp, D., Miller, D.P., and
Slack., M.G., 1997, Experiences with an Architecture for Intelligent,
Reactive Agents, In Journal of Experimental and Theoretical Artificial
Intelligence

Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G.,
2000a, Using Iterative Repair to Improve the Responsiveness of Planning
and Scheduling, In Proceedings of the 5th International Conference on
Artificial Intelligence Planning and Scheduling, Breckenridge, CO

Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B.,
Mutz, D., Estlin, T., Smith, B., Fisher, F., Barrett, T., Stebbins, G., and
Tran, D. 2000b. ASPEN - Automating Space Mission Operations using
Automated Planning and Scheduling, In Proceedings of the SpaceOps
2000 Conference, Toulouse, France.

(DSN, 1994) Deep Space Network, Jet Propulsion Laboratory
Publication 400-517, April 1994.

Fisher, F., Knight, R., Engelhardt, B., Chien, S., and Alejandre, N.,
2000, A Planning Approach to Monitor and Control for Deep Space
Communications", In Proceedings of the IEEE Aerospace Conference

Fisher, F., Estlin, T., Mutz, D., and Chien, S., 1998, Using Artificial
Intelligence Planning to Generate Antenna Tracking Plans, In Proceedings
of the Conference on Innovative Applications of Artificial Intelligence,
Orlando, Florida

Gat, E., 2000, Hard-real-time Resource Management for Autonomous
Spacecraft, In Proceedings of the 2000 IEEE Aerospace Conference. Big
Sky, MT.

Gat, E., 1998, On Three-Layer Architectures, In D. Kortenkamp, R. P.
Bonnasso, and R. Murphy, eds. Artificial Intelligence and Mobile Robots.
MIT/AAAI Press. Cambridge, MA, 1998.

Gat, E., 1992, Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile robots. In
Proceedings of the National Conference on Artificial Intelligence

Knight, R., Fisher, F., Estlin, T., Engelhardt, B., and Chien, S., 2001
Balancing Deliberation and Reaction, Planning and Execution for Space
Robotic Applications, In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, Maui, Hawaii,

Lyons, D. and Hendriks, A., 1995 Planning as incremental adaptation
of a reactive system, Robotics and Autonomous Systems, 14(4), 255-288

Minton, S., and Johnston, M. 1988. Minimizing Conflicts: A Heuristic
Repair Method for Constraint Satisfaction and Scheduling Problems.”
Artificial Intelligence, 58:161-205.

Mishkin, A., Morrison, J., Nguyen, T., Stone, H. Cooper, B., Wilcox,
B., 1998, Experiences with Operations and Autonomy of the Mars
Pathfinder Microrover, Proceedings of IEEE Aerospace Conference,
Snowmass at Aspen

Musliner, D.J., Durfee, E., and Shin, K., 1993, CIRCA: A cooperative,
intelligent, real-time control architecture, IEEE Transactions on Systems,
Man and Cybernetics, 23(6)

Myers, K. L. 1998, Towards a Framework for Continuous Planning and
Execution, In Proceedings of the AAAI Fall Symposium on Distributed
Continual Planning

Pell, B., Gat, E., Keesing, R., Muscettola, R., and Smith, B., 1997b.
Robust periodic planning and execution for autonomous spacecraft, In
Proceedings of the Int’l Joint Conference on Artificial Intelligence

Rabideau, G., Engelhardt, B., and Chien, S. 2000. Using Generic
Preferences to Incrementally Improve Plan Quality. In Proceedings of the
Fifth International Conference on Artificial Intelligence Planning and
Scheduling, Breckenridge, CO.

Simmons, R. and Apfelbaum, D., 1998 A Task Description Language
for Robot Control, In Proceedings of Conference on Intelligent Robotics
and Systems, Vancouver Canada

Washington, R., Golden, K., Bresina, J., Smith, D.E., Anderson, C.,
and Smith, T. 1999. Autonomous Rovers for Mars Exploration. In
Proceedings of the 1999 IEEE Aerospace Conference. Aspen, CO.

Wilkins, D. E., 1988, Causal Reasoning in Planning, Computational
Intelligence, vol. 4, no. 4, pp. 373--380

Zweben, M., Daun, B., Davis, E., and Deale, M. 1994. Scheduling and
Rescheduling with Iterative Repair, In Intelligent Scheduling, Morgan
Kaufmann, San Francisco, CA. 241-256.

